Apolipoprotein A-V deficiency results in marked hypertriglyceridemia attributable to decreased lipolysis of triglyceride-rich lipoproteins and removal of their remnants.

نویسندگان

  • Itamar Grosskopf
  • Nadine Baroukh
  • Sung-Joon Lee
  • Yehuda Kamari
  • Dror Harats
  • Edward M Rubin
  • Len A Pennacchio
  • Allen D Cooper
چکیده

OBJECTIVE ApoAV, a newly discovered apoprotein, affects plasma triglyceride level. To determine how this occurs, we studied triglyceride-rich lipoprotein (TRL) metabolism in mice deficient in apoAV. METHODS AND RESULTS No significant difference in triglyceride production rate was found between apoa5(-/-) mice and controls. The presence or absence of apoAV affected TRL catabolism. After the injection of 14C-palmitate and 3H-cholesterol labeled chylomicrons and (125)I-labeled chylomicron remnants, the disappearance of 14C, 3H, and (125)I was significantly slower in apoa5(-/-) mice relative to controls. This was because of diminished lipolysis of TRL and the reduced rate of uptake of their remnants in apoa5(-/-) mice. Observed elevated cholesterol level was caused by increased high-density lipoprotein (HDL) cholesterol in apoa5(-/-) mice. VLDL from apoa5(-/-) mice were poor substrate for lipoprotein lipase, and did not bind to the low-density lipoprotein (LDL) receptor as well as normal very-low-density lipoprotein (VLDL). LDL receptor levels were slightly elevated in apoa5(-/-) mice consistent with lower remnant uptake rates. These alterations may be the result of the lower apoE-to-apoC ratio found in VLDL isolated from apoa5(-/-) mice. CONCLUSIONS These results support the hypothesis that the absence of apoAV slows lipolysis of TRL and the removal of their remnants by regulating their apoproteins content after secretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of lipoprotein lipase in the regulation of high density lipoprotein apolipoprotein metabolism. Studies in normal and lipoprotein lipase-inhibited monkeys.

Mechanisms that might be responsible for the low levels of high density lipoprotein (HDL) associated with hypertriglyceridemia were studied in an animal model. Specific monoclonal antibodies were infused into female cynomolgus monkeys to inhibit lipoprotein lipase (LPL), the rate-limiting enzyme for triglyceride catabolism. LPL inhibition produced marked and sustained hypertriglyceridemia, with...

متن کامل

Chylomicronemia due to apolipoprotein CIII overexpression in apolipoprotein E-null mice. Apolipoprotein CIII-induced hypertriglyceridemia is not mediated by effects on apolipoprotein E.

The mechanism of apolipoprotein (apo) CIII-induced hypertriglyceridemia remains uncertain. We crossed apoCIII transgenic and apoE gene knockout (apoE0) mice, and observed severe hypertriglyceridemia with plasma triglyceride levels of 4,521+/-6, 394 mg/dl vs. 423+/-106 mg/dl in apoE0 mice, P < 0.00001 for log(triglycerides [TG]). Cholesterols were 1,181+/-487 mg/dl vs. 658+/-151 mg/dl, P < 0.000...

متن کامل

Dynamics of apolipoprotein E metabolism in humans.

The dynamics of human apoE metabolism were explored by examining the effects of alimentary lipemia and postheparin lipolysis on the plasma level and lipoprotein distribution of apoE. In the studies of alimentary lipemia, fasting and postprandial plasma samples were obtained from five normal adult males, each of whom drank 100 g of corn oil. Although no change in the plasma concentration of apoE...

متن کامل

Studies on the mechanism of hypertriglyceridemia in the genetically obese Zucker rat.

The possibility that impaired removal of lipoprotein triglyceride from the circulation may be a participating factor in the hypertriglyceridemia of the obese Zucker rat was examined. We found no significant differences in the heparin-released lipoprotein lipase (LPL) activities of the adipose tissue, skeletal muscle, and heart (expressed per gram of tissue) from the lean and obese Zucker rats. ...

متن کامل

Inhibitory effects of specific apolipoprotein C-III isoforms on the binding of triglyceride-rich lipoproteins to the lipolysis-stimulated receptor.

ApoC-III overexpression in mice results in severe hypertriglyceridemia due primarily to a delay in the clearance of triglyceride-rich lipoproteins. We have, in primary cultures of rat hepatocytes, characterized a lipolysis-stimulated receptor (LSR). The apparent number of LSR that are available on rat liver plasma membranes is negatively correlated with plasma triglyceride concentrations measur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 25 12  شماره 

صفحات  -

تاریخ انتشار 2005